Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38329858

RESUMO

Spiking neural networks (SNNs) mimic their biological counterparts more closely than their predecessors and are considered the third generation of artificial neural networks. It has been proven that networks of spiking neurons have a higher computational capacity and lower power requirements than sigmoidal neural networks. This article introduces a new type of SNN that draws inspiration and incorporates concepts from neuronal assemblies in the human brain. The proposed network, termed as class-dependent neuronal activation-based SNN (CDNA-SNN), assigns each neuron learnable values known as CDNAs which indicate the neuron's average relative spiking activity in response to samples from different classes. A new learning algorithm that categorizes the neurons into different class assemblies based on their CDNAs is also presented. These neuronal assemblies are trained via a novel training method based on spike-timing-dependent plasticity (STDP) to have high activity for their associated class and low firing rate for other classes. Also, using CDNAs, a new type of STDP that controls the amount of plasticity based on the assemblies of pre-and postsynaptic neurons is proposed. The performance of CDNA-SNN is evaluated on five datasets from the University of California, Irvine (UCI) machine learning repository, as well as Modified National Institute of Standards and Technology (MNIST) and Fashion MNIST, using nested cross-validation (N-CV) for hyperparameter optimization. Our results show that CDNA-SNN significantly outperforms synaptic weight association training (SWAT) ( p 0.0005) and SpikeProp ( p 0.05) on 3/5 and self-regulating evolving spiking neural (SRESN) ( p 0.05) on 2/5 UCI datasets while using the significantly lower number of trainable parameters. Furthermore, compared to other supervised, fully connected SNNs, the proposed SNN reaches the best performance for Fashion MNIST and comparable performance for MNIST and neuromorphic-MNIST (N-MNIST), also utilizing much less (1%-35%) parameters.

2.
Neuroimage ; 285: 120458, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37993002

RESUMO

State-space models are widely employed across various research disciplines to study unobserved dynamics. Conventional estimation techniques, such as Kalman filtering and expectation maximisation, offer valuable insights but incur high computational costs in large-scale analyses. Sparse inverse covariance estimators can mitigate these costs, but at the expense of a trade-off between enforced sparsity and increased estimation bias, necessitating careful assessment in low signal-to-noise ratio (SNR) situations. To address these challenges, we propose a three-fold solution: (1) Introducing multiple penalised state-space (MPSS) models that leverage data-driven regularisation; (2) Developing novel algorithms derived from backpropagation, gradient descent, and alternating least squares to solve MPSS models; (3) Presenting a K-fold cross-validation extension for evaluating regularisation parameters. We validate this MPSS regularisation framework through lower and more complex simulations under varying SNR conditions, including a large-scale synthetic magneto- and electro-encephalography (MEG/EEG) data analysis. In addition, we apply MPSS models to concurrently solve brain source localisation and functional connectivity problems for real event-related MEG/EEG data, encompassing thousands of sources on the cortical surface. The proposed methodology overcomes the limitations of existing approaches, such as constraints to small-scale and region-of-interest analyses. Thus, it may enable a more accurate and detailed exploration of cognitive brain functions.


Assuntos
Eletroencefalografia , Magnetoencefalografia , Humanos , Magnetoencefalografia/métodos , Eletroencefalografia/métodos , Mapeamento Encefálico/métodos , Encéfalo , Razão Sinal-Ruído , Algoritmos , Modelos Neurológicos , Simulação por Computador
3.
Res Sq ; 2023 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-37503229

RESUMO

Can infant exploration and causal discovery be detected using Artificial Intelligence (AI)? A recent experiment probed how purposeful action emerges in early life by manipulating infants' functional connection to an object in the environment (i.e., tethering one foot to a colorful mobile). Vicon motion capture data from multiple infant joints were used here to create Histograms of Joint Displacements (HJDs) to generate pose-based descriptors for 3D infant spatial trajectories. Using HJDs as inputs, machine and deep learning systems were tasked with classifying the experimental state from which snippets of movement data were sampled. The architectures tested included k-Nearest Neighbour (kNN), Linear Discriminant Analysis (LDA), Fully connected network (FCNet), 1D-Convolutional Neural Network (1D-Conv), 1D-Capsule Network (1D-CapsNet), 2D-Conv and 2D-CapsNet. Sliding window scenarios were used for temporal analysis to search for topological changes in infant movement related to functional context. kNN and LDA achieved higher classification accuracy with single joint features, while deep learning approaches, particularly 2D-CapsNet, achieved higher accuracy on full-body features. For each AI architecture tested, measures of foot activity displayed the most distinct and coherent pattern alterations across different experimental stages (reflected in the highest classification accuracy rate), indicating that interaction with the world impacts the infant behaviour most at the site of organism∼world connection. Pairing theory-driven experimentation with AI tools thus opens a path to developing functionally-relevant assessments of infant behaviour that are likely to be useful in clinical settings.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37432820

RESUMO

Neurorehabilitation with robotic devices requires a paradigm shift to enhance human-robot interaction. The coupling of robot assisted gait training (RAGT) with a brain-machine interface (BMI) represents an important step in this direction but requires better elucidation of the effect of RAGT on the user's neural modulation. Here, we investigated how different exoskeleton walking modes modify brain and muscular activity during exoskeleton assisted gait. We recorded electroencephalographic (EEG) and electromyographic (EMG) activity from ten healthy volunteers walking with an exoskeleton with three modes of user assistance (i.e., transparent, adaptive and full assistance) and during free overground gait. Results identified that exoskeleton walking (irrespective of the exoskeleton mode) induces a stronger modulation of central mid-line mu (8-13 Hz) and low-beta (14-20 Hz) rhythms compared to free overground walking. These modifications are accompanied by a significant re-organization of the EMG patterns in exoskeleton walking. On the other hand, we observed no significant differences in neural activity during exoskeleton walking with the different assistance levels. We subsequently implemented four gait classifiers based on deep neural networks trained on the EEG data during the different walking conditions. Our hypothesis was that exoskeleton modes could impact the creation of a BMI-driven RAGT. We demonstrated that all classifiers achieved an average accuracy of 84.13±3.49% in classifying swing and stance phases on their respective datasets. In addition, we demonstrated that the classifier trained on the transparent mode exoskeleton data can classify gait phases during adaptive and full modes with an accuracy of 78.3±4.8% , while the classifier trained on free overground walking data fails to classify the gait during exoskeleton walking (accuracy of 59.4±11.8% ). These findings provide important insights into the effect of robotic training on neural activity and contribute to the advancement of BMI technology for improving robotic gait rehabilitation therapy.


Assuntos
Exoesqueleto Energizado , Robótica , Humanos , Marcha , Caminhada , Robótica/métodos , Extremidade Inferior
5.
Sensors (Basel) ; 23(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37447686

RESUMO

The present study introduces a brain-computer interface designed and prototyped to be wearable and usable in daily life. Eight dry electroencephalographic sensors were adopted to acquire the brain activity associated with motor imagery. Multimodal feedback in extended reality was exploited to improve the online detection of neurological phenomena. Twenty-seven healthy subjects used the proposed system in five sessions to investigate the effects of feedback on motor imagery. The sample was divided into two equal-sized groups: a "neurofeedback" group, which performed motor imagery while receiving feedback, and a "control" group, which performed motor imagery with no feedback. Questionnaires were administered to participants aiming to investigate the usability of the proposed system and an individual's ability to imagine movements. The highest mean classification accuracy across the subjects of the control group was about 62% with 3% associated type A uncertainty, and it was 69% with 3% uncertainty for the neurofeedback group. Moreover, the results in some cases were significantly higher for the neurofeedback group. The perceived usability by all participants was high. Overall, the study aimed at highlighting the advantages and the pitfalls of using a wearable brain-computer interface with dry sensors. Notably, this technology can be adopted for safe and economically viable tele-rehabilitation.


Assuntos
Interfaces Cérebro-Computador , Telerreabilitação , Dispositivos Eletrônicos Vestíveis , Humanos , Eletroencefalografia/métodos , Imagens, Psicoterapia/métodos
6.
J Neuroeng Rehabil ; 19(1): 95, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068570

RESUMO

BACKGROUND: The brain-computer interface (BCI) race at the Cybathlon championship, for people with disabilities, challenges teams (BCI researchers, developers and pilots with spinal cord injury) to control an avatar on a virtual racetrack without movement. Here we describe the training regime and results of the Ulster University BCI Team pilot who has tetraplegia and was trained to use an electroencephalography (EEG)-based BCI intermittently over 10 years, to compete in three Cybathlon events. METHODS: A multi-class, multiple binary classifier framework was used to decode three kinesthetically imagined movements (motor imagery of left arm, right arm, and feet), and relaxed state. Three game paradigms were used for training i.e., NeuroSensi, Triad, and Cybathlon Race: BrainDriver. An evaluation of the pilot's performance is presented for two Cybathlon competition training periods-spanning 20 sessions over 5 weeks prior to the 2019 competition, and 25 sessions over 5 weeks in the run up to the 2020 competition. RESULTS: Having participated in BCI training in 2009 and competed in Cybathlon 2016, the experienced pilot achieved high two-class accuracy on all class pairs when training began in 2019 (decoding accuracy > 90%, resulting in efficient NeuroSensi and Triad game control). The BrainDriver performance (i.e., Cybathlon race completion time) improved significantly during the training period, leading up to the competition day, ranging from 274-156 s (255 ± 24 s to 191 ± 14 s mean ± std), over 17 days (10 sessions) in 2019, and from 230-168 s (214 ± 14 s to 181 ± 4 s), over 18 days (13 sessions) in 2020. However, on both competition occasions, towards the race date, the performance deteriorated significantly. CONCLUSIONS: The training regime and framework applied were highly effective in achieving competitive race completion times. The BCI framework did not cope with significant deviation in electroencephalography (EEG) observed in the sessions occurring shortly before and during the race day. Changes in cognitive state as a result of stress, arousal level, and fatigue, associated with the competition challenge and performance pressure, were likely contributing factors to the non-stationary effects that resulted in the BCI and pilot achieving suboptimal performance on race day. Trial registration not registered.


Assuntos
Interfaces Cérebro-Computador , Pessoas com Deficiência , Eletroencefalografia/métodos , Humanos , Imagens, Psicoterapia , Quadriplegia
7.
Neurosci Biobehav Rev ; 140: 104783, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35907491

RESUMO

Decoding speech and speech-related processes directly from the human brain has intensified in studies over recent years as such a decoder has the potential to positively impact people with limited communication capacity due to disease or injury. Additionally, it can present entirely new forms of human-computer interaction and human-machine communication in general and facilitate better neuroscientific understanding of speech processes. Here, we synthesize the literature on neural speech decoding pertaining to how speech decoding experiments have been conducted, coalescing around a necessity for thoughtful experimental design aimed at specific research goals, and robust procedures for evaluating speech decoding paradigms. We examine the use of different modalities for presenting stimuli to participants, methods for construction of paradigms including timings and speech rhythms, and possible linguistic considerations. In addition, novel methods for eliciting naturalistic speech and validating imagined speech task performance in experimental settings are presented based on recent research. We also describe the multitude of terms used to instruct participants on how to produce imagined speech during experiments and propose methods for investigating the effect of these terms on imagined speech decoding. We demonstrate that the range of experimental procedures used in neural speech decoding studies can have unintended consequences which can impact upon the efficacy of the knowledge obtained. The review delineates the strengths and weaknesses of present approaches and poses methodological advances which we anticipate will enhance experimental design, and progress toward the optimal design of movement independent direct speech brain-computer interfaces.


Assuntos
Interfaces Cérebro-Computador , Fala , Encéfalo , Mapeamento Encefálico , Eletroencefalografia , Humanos , Linguística
9.
IEEE Trans Biomed Eng ; 69(6): 1983-1994, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34874850

RESUMO

OBJECTIVE: Brain-computer interfaces (BCI) studies are increasingly leveraging different attributes of multiple signal modalities simultaneously. Bimodal data acquisition protocols combining the temporal resolution of electroencephalography (EEG) with the spatial resolution of functional near-infrared spectroscopy (fNIRS) require novel approaches to decoding. METHODS: We present an EEG-fNIRS Hybrid BCI that employs a new bimodal deep neural network architecture consisting of two convolutional sub-networks (subnets) to decode overt and imagined speech. Features from each subnet are fused before further feature extraction and classification. Nineteen participants performed overt and imagined speech in a novel cue-based paradigm enabling investigation of stimulus and linguistic effects on decoding. RESULTS: Using the hybrid approach, classification accuracies (46.31% and 34.29% for overt and imagined speech, respectively (chance: 25%)) indicated a significant improvement on EEG used independently for imagined speech (p = 0.020) while tending towards significance for overt speech (p = 0.098). In comparison with fNIRS, significant improvements for both speech-types were achieved with bimodal decoding (p<0.001). There was a mean difference of ∼12.02% between overt and imagined speech with accuracies as high as 87.18% and 53%. Deeper subnets enhanced performance while stimulus effected overt and imagined speech in significantly different ways. CONCLUSION: The bimodal approach was a significant improvement on unimodal results for several tasks. Results indicate the potential of multi-modal deep learning for enhancing neural signal decoding. SIGNIFICANCE: This novel architecture can be used to enhance speech decoding from bimodal neural signals.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Eletroencefalografia/métodos , Humanos , Redes Neurais de Computação , Fala
11.
Sensors (Basel) ; 20(16)2020 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-32824559

RESUMO

Classification of electroencephalography (EEG) signals corresponding to imagined speech production is important for the development of a direct-speech brain-computer interface (DS-BCI). Deep learning (DL) has been utilized with great success across several domains. However, it remains an open question whether DL methods provide significant advances over traditional machine learning (ML) approaches for classification of imagined speech. Furthermore, hyperparameter (HP) optimization has been neglected in DL-EEG studies, resulting in the significance of its effects remaining uncertain. In this study, we aim to improve classification of imagined speech EEG by employing DL methods while also statistically evaluating the impact of HP optimization on classifier performance. We trained three distinct convolutional neural networks (CNN) on imagined speech EEG using a nested cross-validation approach to HP optimization. Each of the CNNs evaluated was designed specifically for EEG decoding. An imagined speech EEG dataset consisting of both words and vowels facilitated training on both sets independently. CNN results were compared with three benchmark ML methods: Support Vector Machine, Random Forest and regularized Linear Discriminant Analysis. Intra- and inter-subject methods of HP optimization were tested and the effects of HPs statistically analyzed. Accuracies obtained by the CNNs were significantly greater than the benchmark methods when trained on both datasets (words: 24.97%, p < 1 × 10-7, chance: 16.67%; vowels: 30.00%, p < 1 × 10-7, chance: 20%). The effects of varying HP values, and interactions between HPs and the CNNs were both statistically significant. The results of HP optimization demonstrate how critical it is for training CNNs to decode imagined speech.


Assuntos
Interfaces Cérebro-Computador , Aprendizado Profundo , Fala , Eletroencefalografia , Aprendizado de Máquina , Redes Neurais de Computação
12.
Front Neurosci ; 14: 578, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714127

RESUMO

Background: Stroke is a disease with a high associated disability burden. Robotic-assisted gait training offers an opportunity for the practice intensity levels associated with good functional walking outcomes in this population. Neural interfacing technology, electroencephalography (EEG), or electromyography (EMG) can offer new strategies for robotic gait re-education after a stroke by promoting more active engagement in movement intent and/or neurophysiological feedback. Objectives: This study identifies the current state-of-the-art and the limitations in direct neural interfacing with robotic gait devices in stroke rehabilitation. Methods: A pre-registered systematic review was conducted using standardized search operators that included the presence of stroke and robotic gait training and neural biosignals (EMG and/or EEG) and was not limited by study type. Results: From a total of 8,899 papers identified, 13 articles were considered for the final selection. Only five of the 13 studies received a strong or moderate quality rating as a clinical study. Three studies recorded EEG activity during robotic gait, two of which used EEG for BCI purposes. While demonstrating utility for decoding kinematic and EMG-related gait data, no EEG study has been identified to close the loop between robot and human. Twelve of the studies recorded EMG activity during or after robotic walking, primarily as an outcome measure. One study used multisource information fusion from EMG, joint angle, and force to modify robotic commands in real time, with higher error rates observed during active movement. A novel study identified used EMG data during robotic gait to derive the optimal, individualized robot-driven step trajectory. Conclusions: Wide heterogeneity in the reporting and the purpose of neurobiosignal use during robotic gait training after a stroke exists. Neural interfacing with robotic gait after a stroke demonstrates promise as a future field of study. However, as a nascent area, direct neural interfacing with robotic gait after a stroke would benefit from a more standardized protocol for biosignal collection and processing and for robotic deployment. Appropriate reporting for clinical studies of this nature is also required with respect to the study type and the participants' characteristics.

13.
Hum Brain Mapp ; 41(12): 3212-3234, 2020 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-32301561

RESUMO

Despite resting state networks being associated with a variety of cognitive abilities, it remains unclear how these local areas act in concert to express particular cognitive operations. Theoretical and empirical accounts indicate that large-scale resting state networks reconcile dual tendencies towards integration and segregation by operating in a metastable regime of their coordination dynamics. Metastability may confer important behavioural qualities by binding distributed local areas into large-scale neurocognitive networks. We tested this hypothesis by analysing fMRI data in a large cohort of healthy individuals (N = 566) and comparing the metastability of the brain's large-scale resting network architecture at rest and during the performance of several tasks. Metastability was estimated using a well-defined collective variable capturing the level of 'phase-locking' between large-scale networks over time. Task-based reasoning was principally characterised by high metastability in cognitive control networks and low metastability in sensory processing areas. Although metastability between resting state networks increased during task performance, cognitive ability was more closely linked to spontaneous activity. High metastability in the intrinsic connectivity of cognitive control networks was linked to novel problem solving or fluid intelligence, but was less important in tasks relying on previous experience or crystallised intelligence. Crucially, subjects with resting architectures similar or 'pre-configured' to a task-general arrangement demonstrated superior cognitive performance. Taken together, our findings support a key linkage between the spontaneous metastability of large-scale networks in the cerebral cortex and cognition.


Assuntos
Córtex Cerebral/fisiologia , Cognição/fisiologia , Conectoma , Função Executiva/fisiologia , Inteligência/fisiologia , Atividade Motora/fisiologia , Rede Nervosa/fisiologia , Desempenho Psicomotor/fisiologia , Percepção Social , Pensamento/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Humanos , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
14.
IEEE Trans Neural Syst Rehabil Eng ; 28(1): 113-122, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31751279

RESUMO

Rapid serial visual presentation (RSVP) based brain-computer interfaces (BCIs) can detect target images among a continuous stream of rapidly presented images, by classifying a viewer's event related potentials (ERPs) associated with the target and non-targets images. Whilst the majority of RSVP-BCI studies to date have concentrated on the identification of a single type of image, namely pictures, here we study the capability of RSVP-BCI to detect three different target image types: pictures, numbers and words. The impact of presentation duration (speed) i.e., 100-200ms (5-10Hz), 200-300ms (3.3-5Hz) or 300-400ms (2.5-3.3Hz), is also investigated. 2-way repeated measure ANOVA on accuracies of detecting targets from non-target stimuli (ratio 1:9) measured via area under the receiver operator characteristics curve (AUC) for N=15 subjects revealed a significant effect of factor Stimulus-Type (pictures, numbers, words) (F (2,28) = 7.243, p = 0.003 ) and for Stimulus-Duration (F (2,28) = 5.591, p = 0.011). Furthermore, there is an interaction between stimulus type and duration: F (4,56) = 4.419, p = 0.004 ). The results indicate that when designing RSVP-BCI paradigms, the content of the images and the rate at which images are presented impact on the accuracy of detection and hence these parameters are key experimental variables in protocol design and applications, which apply RSVP for multimodal image datasets.


Assuntos
Eletroencefalografia/métodos , Potenciais Evocados/fisiologia , Estimulação Luminosa/métodos , Adulto , Área Sob a Curva , Interfaces Cérebro-Computador , Calibragem , Feminino , Voluntários Saudáveis , Humanos , Masculino , Reprodutibilidade dos Testes , Percepção Visual/fisiologia , Adulto Jovem
15.
Front Neurorobot ; 13: 94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798438

RESUMO

Background: Realization of online control of an artificial or virtual arm using information decoded from EEG normally occurs by classifying different activation states or voluntary modulation of the sensorimotor activity linked to different overt actions of the subject. However, using a more natural control scheme, such as decoding the trajectory of imagined 3D arm movements to move a prosthetic, robotic, or virtual arm has been reported in a limited amount of studies, all using offline feed-forward control schemes. Objective: In this study, we report the first attempt to realize online control of two virtual arms generating movements toward three targets/arm in 3D space. The 3D trajectory of imagined arm movements was decoded from power spectral density of mu, low beta, high beta, and low gamma EEG oscillations using multiple linear regression. The analysis was performed on a dataset recorded from three subjects in seven sessions wherein each session comprised three experimental blocks: an offline calibration block and two online feedback blocks. Target classification accuracy using predicted trajectories of the virtual arms was computed and compared with results of a filter-bank common spatial patterns (FBCSP) based multi-class classification method involving mutual information (MI) selection and linear discriminant analysis (LDA) modules. Main Results: Target classification accuracy from predicted trajectory of imagined 3D arm movements in the offline runs for two subjects (mean 45%, std 5%) was significantly higher (p < 0.05) than chance level (33.3%). Nevertheless, the accuracy during real-time control of the virtual arms using the trajectory decoded directly from EEG was in the range of chance level (33.3%). However, the results of two subjects show that false-positive feedback may increase the accuracy in closed-loop. The FBCSP based multi-class classification method distinguished imagined movements of left and right arm with reasonable accuracy for two of the three subjects (mean 70%, std 5% compared to 50% chance level). However, classification of the imagined arm movement toward three targets was not successful with the FBCSP classifier as the achieved accuracy (mean 33%, std 5%) was similar to the chance level (33.3%). Sub-optimal components of the multi-session experimental paradigm were identified, and an improved paradigm proposed.

16.
IEEE Trans Neural Syst Rehabil Eng ; 27(4): 572-581, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30869627

RESUMO

Motion-onset visually evoked potentials (mVEPs) are neural potentials that are time-locked to the onset of motion of evoking stimuli. Due to their visually elegant properties, mVEP stimuli may be suited to video game control given gaming's inherent demand on the users' visual attention and the requirement to process rapidly changing visual information. Here, we investigate mVEPs associated with five different stimuli to control the position of a car in a visually rich 3D racing game in a group of 15 BCI naïve teenagers and compared with 19 BCI naive adults. Results from an additional 14 BCI experienced adults were compared with BCI naïve adults. Our results demonstrate that the game control accuracy is related to the number of trials used to make a decision on the users' chosen button/stimulus (76%, 62%, and 35% for 5, 3, and 1 trials, respectively) and information transfer rate (ITR) (13.4, 13.9, and 6.6 bits per minute (BPM)), although, even though accuracy decreases when using three compared to the commonly used five trial repetitions, ITR is maintained. A Kruskal-Wallis test suggests that BCI naïve adults do not outperform BCI naïve teenagers in the 3D racing game in the first and seconds laps (p > 0.05), but do outperform in the third lap (p < 0.05). A comparison between BCI naïve and BCI experienced adults indicates BCI experienced adults do not perform better than BCI naïve adults (p > 0.05).


Assuntos
Envelhecimento/psicologia , Interfaces Cérebro-Computador , Potenciais Evocados Visuais/fisiologia , Adolescente , Adulto , Algoritmos , Criança , Gráficos por Computador , Eletroencefalografia , Feminino , Humanos , Masculino , Percepção de Movimento/fisiologia , Estimulação Luminosa , Desempenho Psicomotor , Jogos de Vídeo , Adulto Jovem
17.
iScience ; 8: 103-125, 2018 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-30296666

RESUMO

A direct-speech brain-computer interface (DS-BCI) acquires neural signals corresponding to imagined speech, then processes and decodes these signals to produce a linguistic output in the form of phonemes, words, or sentences. Recent research has shown the potential of neurolinguistics to enhance decoding approaches to imagined speech with the inclusion of semantics and phonology in experimental procedures. As neurolinguistics research findings are beginning to be incorporated within the scope of DS-BCI research, it is our view that a thorough understanding of imagined speech, and its relationship with overt speech, must be considered an integral feature of research in this field. With a focus on imagined speech, we provide a review of the most important neurolinguistics research informing the field of DS-BCI and suggest how this research may be utilized to improve current experimental protocols and decoding techniques. Our review of the literature supports a cross-disciplinary approach to DS-BCI research, in which neurolinguistics concepts and methods are utilized to aid development of a naturalistic mode of communication.

18.
Neuroimage ; 183: 438-455, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30130642

RESUMO

Current theory suggests brain regions interact to reconcile the competing demands of integration and segregation by leveraging metastable dynamics. An emerging consensus recognises the importance of metastability in healthy neural dynamics where the transition between network states over time is dependent upon the structural connectivity between brain regions. In Alzheimer's disease (AD) - the most common form of dementia - these couplings are progressively weakened, metastability of neural dynamics are reduced and cognitive ability is impaired. Accordingly, we use a joint empirical and computational approach to reveal how behaviourally relevant changes in neural metastability are contingent on the structural integrity of the anatomical connectome. We estimate the metastability of fMRI BOLD signal in subjects from across the AD spectrum and in healthy controls and demonstrate the dissociable effects of structural disconnection on synchrony versus metastability. In addition, we reveal the critical role of metastability in general cognition by demonstrating the link between an individuals cognitive performance and their metastable neural dynamic. Finally, using whole-brain computer modelling, we demonstrate how a healthy neural dynamic is conditioned upon the topological integrity of the structural connectome. Overall, the results of our joint computational and empirical analysis suggest an important causal relationship between metastable neural dynamics, cognition, and the structural efficiency of the anatomical connectome.


Assuntos
Doença de Alzheimer , Conectoma/métodos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Rede Nervosa , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/patologia , Doença de Alzheimer/fisiopatologia , Bases de Dados Factuais , Imagem de Tensor de Difusão/métodos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Rede Nervosa/patologia , Rede Nervosa/fisiopatologia
19.
Front Neurosci ; 12: 130, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29615848

RESUMO

Objective: To date, motion trajectory prediction (MTP) of a limb from non-invasive electroencephalography (EEG) has relied, primarily, on band-pass filtered samples of EEG potentials i.e., the potential time-series model. Most MTP studies involve decoding 2D and 3D arm movements i.e., executed arm movements. Decoding of observed or imagined 3D movements has been demonstrated with limited success and only reported in a few studies. MTP studies normally use EEG potentials filtered in the low delta (~1 Hz) band for reconstructing the trajectory of an executed or an imagined/observed movement. In contrast to MTP, multiclass classification based sensorimotor rhythm brain-computer interfaces aim to classify movements using the power spectral density of mu (8-12 Hz) and beta (12-28 Hz) bands. Approach: We investigated if replacing the standard potentials time-series input with a power spectral density based bandpower time-series improves trajectory decoding accuracy of kinesthetically imagined 3D hand movement tasks (i.e., imagined 3D trajectory of the hand joint) and whether imagined 3D hand movements kinematics are encoded also in mu and beta bands. Twelve naïve subjects were asked to generate or imagine generating pointing movements with their right dominant arm to four targets distributed in 3D space in synchrony with an auditory cue (beep). Main results: Using the bandpower time-series based model, the highest decoding accuracy for motor execution was observed in mu and beta bands whilst for imagined movements the low gamma (28-40 Hz) band was also observed to improve decoding accuracy for some subjects. Moreover, for both (executed and imagined) movements, the bandpower time-series model with mu, beta, and low gamma bands produced significantly higher reconstruction accuracy than the commonly used potential time-series model and delta oscillations. Significance: Contrary to many studies that investigated only executed hand movements and recommend using delta oscillations for decoding directional information of a single limb joint, our findings suggest that motor kinematics for imagined movements are reflected mostly in power spectral density of mu, beta and low gamma bands, and that these bands may be most informative for decoding 3D trajectories of imagined limb movements.

20.
J Neural Eng ; 15(2): 021001, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29099388

RESUMO

Rapid serial visual presentation (RSVP) combined with the detection of event-related brain responses facilitates the selection of relevant information contained in a stream of images presented rapidly to a human. Event related potentials (ERPs) measured non-invasively with electroencephalography (EEG) can be associated with infrequent targets amongst a stream of images. Human-machine symbiosis may be augmented by enabling human interaction with a computer, without overt movement, and/or enable optimization of image/information sorting processes involving humans. Features of the human visual system impact on the success of the RSVP paradigm, but pre-attentive processing supports the identification of target information post presentation of the information by assessing the co-occurrence or time-locked EEG potentials. This paper presents a comprehensive review and evaluation of the limited, but significant, literature on research in RSVP-based brain-computer interfaces (BCIs). Applications that use RSVP-based BCIs are categorized based on display mode and protocol design, whilst a range of factors influencing ERP evocation and detection are analyzed. Guidelines for using the RSVP-based BCI paradigms are recommended, with a view to further standardizing methods and enhancing the inter-relatability of experimental design to support future research and the use of RSVP-based BCIs in practice.


Assuntos
Interfaces Cérebro-Computador , Encéfalo/fisiologia , Eletroencefalografia/métodos , Potenciais Evocados Visuais/fisiologia , Estimulação Luminosa/métodos , Interfaces Cérebro-Computador/tendências , Eletroencefalografia/tendências , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...